The analytic continuation of hyperbolic space
نویسندگان
چکیده
منابع مشابه
The analytic continuation of hyperbolic space
We define and study an extended hyperbolic space which contains the hyperbolic space and de Sitter space as subspaces and which is obtained as an analytic continuation of the hyperbolic space. The construction of the extended space gives rise to a complex valued geometry consistent with both the hyperbolic and de Sitter space. Such a construction shed a light and inspires a new insight for the ...
متن کاملAnalytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces
In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.
متن کاملMultiplication Operators on the Bergman Space via Analytic Continuation
ABSTRACT. In this paper, using the group-like property of local inverses of a finite Blaschke product φ, we will show that the largest C-algebra in the commutant of the multiplication operator Mφ by φ on the Bergman space is finite dimensional, and its dimension equals the number of connected components of the Riemann surface of φ ◦ φ over the unit disk. If the order of the Blaschke product φ i...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملAnalytic Continuation of the Resolvent
In this paper we continue our program of extending the methods of geometric scattering theory to encompass the analysis of the Laplacian on symmetric spaces of rank greater than one and their geometric perturbations. In our previous work [9] we described the resolvent, and specifically the asymptotic behavior of the Green’s function, on SL(3)/ SO(3) using methods from three-particle scattering....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2012
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-012-9698-0